4.7 Article

Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TKDE.2019.2891537

关键词

Correlation; Predictive models; Urban areas; Matrix converters; Sparse matrices; Sun; Deep learning; spatio-temporal data; urban computing

资金

  1. National Natural Science Foundation of China [61672399, U1401258, 61773324]
  2. China National Basic Research Program (973 Program) [2015CB352400]

向作者/读者索取更多资源

Predicting flows (e.g., the traffic of vehicles, crowds, and bikes), consisting of the in-out traffic at a node and transitions between different nodes, in a spatio-temporal network plays an important role in transportation systems. However, this is a very challenging problem, affected by multiple complex factors, such as the spatial correlation between different locations, temporal correlation among different time intervals, and external factors (like events and weather). In addition, the flow at a node (called node flow) and transitions between nodes (edge flow) mutually influence each other. To address these issues, we propose a multitask deep-learning framework that simultaneously predicts the node flow and edge flow throughout a spatio-temporal network. Based on fully convolutional networks, our approach designs two sophisticated models for predicting node flow and edge flow, respectively. These two models are connected by coupling their latent representations of middle layers, and trained together. The external factor is also integrated into the framework through a gating fusion mechanism. In the edge flow prediction model, we employ an embedding component to deal with the sparse transitions between nodes. We evaluate our method based on the taxicab data in Beijing and New York City. Experimental results show the advantages of our method beyond 11 baselines, such as ConvLSTM, CNN, and Markov Random Field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据