4.8 Article

DC-Biased Magnetization Based Eddy Current Thermography for Subsurface Defect Detection

期刊

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
卷 15, 期 12, 页码 6252-6259

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TII.2019.2891107

关键词

Magnetization; Permeability; Heating systems; Skin; Distortion; Eddy currents; Surface cracks; DC-biased magnetization; eddy current thermography; permeability distortion; subsurface defect detection

资金

  1. National Natural Science Foundation of China [51505308]

向作者/读者索取更多资源

Eddy current thermography (ECT) as one of the emerging nondestructive testing and evaluation techniques has been used for defects detection in critical components, e.g., fatigue cracks in turbine blades, bond wire lift-off in IGBT modules, lack of fusion in welded parts, etc. However, in fast inspection using the early thermal response, the thin eddy current penetration depth (skin depth) of ferromagnetic materials limits ECTs capability of detecting subsurface defects. In order to increase the detectable depth range, this paper proposes a dc-biased magnetization based ECT (DCMECT) technique. Based on the nonlinear magnetic permeability in ferromagnetic material, DCMECT can increase the thermal contrast between the defective and sound areas by the enhanced permeability distortion in the skin-depth layer. Specifically, the influences of dc-biased magnetization direction and intensity on the thermal responses (of the defective and sound areas) and their thermal contrast are investigated. Results show that the dc-biased magnetization direction has the strongest influence on the thermal response when it is parallel to the ac magnetization direction generated by the coil. Both the thermal responses of defective and sound areas decrease with the magnetization intensity increasing. Whereas, the thermal contrast between two areas increases with the magnetization intensity, which presents the enhanced defect detectability of DCMECT. The proposed technique can detect the subsurface defect with a buried depth up to 6 mm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据