4.7 Article

CORDIC-Astrocyte: Tripartite Glutamate-IP3-Ca2+ Interaction Dynamics on FPGA

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBCAS.2019.2953631

关键词

Astrocyte; biological-plausible; CORDIC; digital implementation; FPGA; glutamate release; neuromorphic; spiking neural network

向作者/读者索取更多资源

Real-time, large-scale simulation of biological systems is challenging due to different types of nonlinear functions describing biochemical reactions in the cells. The promise of the high speed, cost effectiveness, and power efficiency in addition to parallel processing has made application-specific hardware an attractive simulation platform. This paper proposes high-speed and low-cost digital hardware to emulate a biological-plausible astrocyte and glutamate-release mechanism. The nonlinear terms of these models were calculated using a high-precision and cost-effective algorithm. Subsequently, the modified models were simulated to study and validate their functions. We developed several hardware versions by setting different constraints to investigate trade-offs and find the best possible design. FPGA implementation results confirmed the ability of the design to emulate biological cell behaviours in detail with high accuracy. As for performance, the proposed design turned out to be faster and more efficient than previously published works that targeted digital hardware for biological-plausible astrocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据