4.5 Article

Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions

期刊

HYPERTENSION RESEARCH
卷 43, 期 4, 页码 281-295

出版社

SPRINGERNATURE
DOI: 10.1038/s41440-019-0374-8

关键词

Renin-angiotensin system; Neurogenic hypertension; Blood pressure; Transgenic reporter mice

资金

  1. NHLBI NIH HHS [R01 HL136595, K99 HL125805, R01 HL093186, R01 HL145028, R01 HL122494, R00 HL125805, R01 HL139868, R00 HL096830, R35 HL150750, K99 HL096830] Funding Source: Medline

向作者/读者索取更多资源

Brain angiotensin-II (Ang-II) type-1 receptors (AT1Rs), which exert profound effects on normal cardiovascular, fluid, and metabolic homeostasis, are overactivated in and contribute to chronic sympathoexcitation and hypertension. Accumulating evidence indicates that the activation of Ang-II type-2 receptors (AT2Rs) in the brain exerts effects that are opposite to those of AT1Rs, lowering blood pressure, and reducing hypertension. Thus, it would be interesting to understand the relative cellular localization of AT1R and AT2R in the brain under normal conditions and whether this localization changes during hypertension. Here, we developed a novel AT1aR-tdTomato reporter mouse strain in which the location of brain AT1aR was largely consistent with that determined in the previous studies. This AT1aR-tdTomato reporter mouse strain was crossed with our previously described AT2R-eGFP reporter mouse strain to yield a novel dual AT1aR/AT2R reporter mouse strain, which allowed us to determine that AT1aR and AT2R are primarily localized to different populations of neurons in brain regions controlling cardiovascular, fluid, and metabolic homeostasis. Using the individual AT1aR-tdTomato reporter mice, we also demonstrated that during hypertension induced by the administration of deoxycorticosterone acetate-salt, there was no shift in the expression of AT1aR from neurons to microglia or astrocytes in the paraventricular nucleus, a brain area important for sympathetic regulation. Using AT2R-eGFP reporter mice under similar hypertensive conditions, we demonstrated that the same was true of AT2R expression in the nucleus of the solitary tract (NTS), an area critical for baroreflex control. Collectively, these findings provided a novel means to assess the colocalization of AT1R and AT2R in the brain and a novel view of their cellular localization in hypertension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据