4.6 Article

Evaluating spatiotemporal variation in water chemistry of the upper Colorado River using longitudinal profiling

期刊

HYDROLOGICAL PROCESSES
卷 34, 期 8, 页码 1782-1793

出版社

WILEY
DOI: 10.1002/hyp.13690

关键词

Colorado River; continuum; discontinuity; Lagrangian profiling; spatiotemporal variation

资金

  1. National Science Foundation [DEB1556937, DEB1557028]

向作者/读者索取更多资源

Stream water chemistry is traditionally measured as variation over time at fixed sites, with sparse sites providing a crude understanding of spatial heterogeneity. An alternative Lagrangian reference frame measures changes with respect to both space and time as water travels through a network. Here, we collected sensor-based measurements of water chemistry at high spatial resolution along nearly 500 km of the Upper Colorado River. Our objective was to understand sources of spatiotemporal heterogeneity across different solutes and determine whether longitudinal change manifests as smooth gradients as suggested by the River Continuum Concept (RCC) or as abrupt changes as suggested by the Serial Discontinuity Concept (SDC). Our results demonstrate that Lagrangian sampling integrates spatiotemporal variation, and profiles reflect processes that vary in both space and time and over different scales. Over each day of sampling, water temperature (T) and dissolved oxygen (DO) varied strongly in response to diel solar cycles, with most of the variation driven by sampling time rather than sampling location. Equilibration of T and DO with the atmosphere limited small scale spatial heterogeneity, with variation at the entire profile scale driven by regional climate gradients. As such, T and DO profiles more closely approximated the smooth gradients of the RCC (though including temporal sampling artefacts). Conversely, variation in specific conductance and nitrate (NO3-N) was largely driven by spatial patterns of lateral inflows such as tributaries and groundwater. This resulted in discrete shifts in the profiles at or downstream of discontinuities, appearing as the profiles expected with the SDC. The concatenation of spatiotemporal variation that produces observed Lagrangian profiles presents interpretive challenges but also augments our understanding of where, how, and critically why water chemistry changes in time and space as it moves through river networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据