4.6 Article

Calcium promotes formation of large colonies of the cyanobacterium Microcystis by enhancing cell-adhesion

期刊

HARMFUL ALGAE
卷 92, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.hal.2020.101768

关键词

Microcystis; Colony formation; Ca-2(+); Cell adhesion; Colony morphology

资金

  1. Fundamental Research Funds for the Central Universities [12015836214]
  2. China Scholarship Council

向作者/读者索取更多资源

Large Microcystis colonies can lead to the rapid formation of surface accumulations, which are a globally significant environmental issue. Laboratory studies have shown that Ca2+ can quickly promote non-classical Microcystis colony formation via cell-adhesion, but our knowledge of the changes in the morphology of these colonies during subsequent long-term culture with Ca2+ is limited. In this study, a 72-day cultivation experiment was conducted to determine the long-term effects of Ca2+ on Microcystis colony formation. Laboratory results indicate that Ca2+ causes Microcystis to rapidly aggregate and form a colony through cell adhesion, then colony formation by cell-adhesion lost dominance, owing to the decrease in Ca2+ concentrations caused by precipitation/complexation. Although the initial colony morphology by cell adhesion is sparse, the newly divided cells, without separating from the mother cells, constantly fill the gaps in the original colony at Ca2+ concentrations > 40 mg L-1 for a long time, which creates colonies on day 72 with a morphology similar to that of M. ichthyoblabe in Lake Taihu. If the Ca2+ levels in Lake Taihu continue to increase, Microcystis growth rate will decrease only slightly, while the colony proportion of total biovolume and biomass will increase. Moreover, higher Ca2+ concentrations do not affect microcystin content, but promote the content of bound extracellular polysaccharides (bEPS), enabling formation of larger colonies, which may promote Microcystis surface accumulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据