4.8 Article

Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 3, 页码 1833-1841

出版社

WILEY
DOI: 10.1111/gcb.14929

关键词

biome; climate; functional types; hydraulic diversity; species distribution; water transport

资金

  1. National Natural Science Foundation of China [31570405, 31825005]
  2. Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences [ISEE2018YB01]

向作者/读者索取更多资源

Stem xylem-specific hydraulic conductivity (K-S) represents the potential for plant water transport normalized by xylem cross section, length, and driving force. Variation in K-S has implications for plant transpiration and photosynthesis, growth and survival, and also the geographic distribution of species. Clarifying the global-scale patterns of K-S and its major drivers is needed to achieve a better understanding of how plants adapt to different environmental conditions, particularly under climate change scenarios. Here, we compiled a xylem hydraulics dataset with 1,186 species-at-site combinations (975 woody species representing 146 families, from 199 sites worldwide), and investigated how K-S varied with climatic variables, plant functional types, and biomes. Growing-season temperature and growing-season precipitation drove global variation in K-S independently. Both the mean and the variation in K-S were highest in the warm and wet tropical regions, and lower in cold and dry regions, such as tundra and desert biomes. Our results suggest that future warming and redistribution of seasonal precipitation may have a significant impact on species functional diversity, and is likely to be particularly important in regions becoming warmer or drier, such as high latitudes. This highlights an important role for K-S in predicting shifts in community composition in the face of climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据