4.7 Article

Iron Distribution in the Subtropical North Atlantic: The Pivotal Role of Colloidal Iron

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 33, 期 12, 页码 1532-1547

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019GB006326

关键词

dissolved iron; colloidal iron; subtropical North Atlantic; GEOTRACES

资金

  1. Graduate School of the National Oceanography Centre Southampton
  2. UK Natural Environment Research Council [NE/N001125/1, NE/N001079/1]
  3. NERC [NE/N001125/1, NE/N001079/1] Funding Source: UKRI

向作者/读者索取更多资源

The low availability of the essential micronutrient iron (Fe) in the ocean impacts the efficiency of the biological carbon pump, and hence, it is vital to elucidate its sources, sinks, and internal cycling. We present size-fractionated dissolved Fe (dFe, <0.2 mu m) measurements from 130 surface samples and 7 full-depth profiles from the subtropical North Atlantic during summer 2017 and demonstrate the pivotal role of colloidal (cFe, 0.02 to 0.2 mu m) over soluble (sFe, <0.02 mu m) Fe in controlling the dFe distribution. In the surface (<5 m), a strong west-to-east decrease in dFe (1.53 to 0.26 nM) was driven by a dust gradient, which retained dFe predominantly as cFe (61% to 85% of dFe), while sFe remained largely constant at 0.19 +/- 0.05 nM. In the euphotic zone, the attenuation of dFe resulted from the depletion of cFe (0% to 30% of dFe), with scavenging as an important driver. In the mesopelagic, cFe was released from sinking biogenic and lithogenic particles, creating a zone of elevated dFe (0.7 to 1.0 nM) between 400 to 1100 m depth. While the ocean interior, below the mesopelagic and above the seafloor boundary, exhibited a narrow range of cFe (40% to 60% of dFe), the abyssal cFe fraction varied in range from 26% to 76% due to interactions with seafloor sediments and a hydrothermal source with almost 100% cFe. Overall, our results produced an hourglass shape for the vertical cFe-to-dFe fraction and highlight the primary control of cFe on the dFe distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据