4.7 Article

Drained organic soils under agriculture - The more degraded the soil the higher the specific basal respiration

期刊

GEODERMA
卷 355, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2019.113911

关键词

Carbon dioxide; Peatland agriculture; Heinemeyer incubation; Anthropogenic disturbance; Peat-sand-mixing

资金

  1. German Federal Ministry of Food and Agriculture

向作者/读者索取更多资源

Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agricultural soils. As a consequence of both drainage-induced mineralisation and anthropogenic mixing with mineral soils, large areas of former peatlands under agricultural use underwent a secondary transformation of the peat (e.g. formation of aggregates). These soils show contents of soil organic carbon (SOC) at the boundary between mineral and organic soils. However, the carbon (C) dynamics of such soils have rarely been studied so far. The aim of the present study was to evaluate the vulnerability of soil organic matter (SOM) to decomposition over the whole range of peat-derived soils under agriculture including very carbon rich mineral soils (76-526 g kg(-1) SOC). A total of 62 soil samples covering a broad range of soil and site characteristics were selected from the sample set of the German Agricultural Soil Inventory. Potential CO2 production was measured by aerobic incubation. Fen and bog peat samples were grouped into disturbance classes according to their soil properties. Specific basal respiration rates (SBR), i.e. CO2 fluxes per unit SOC, showed the highest values for the most disturbed samples for both fen peat (13.9 +/- 6.0 mu g CO2-C g SOC-1 h(-1)) and bog peat (10.9 +/- 4.7 mu g CO2-C g SOC-1 h(-1)). Respiration rates of bog peat increased more strongly with an increasing degree of disturbance than those of fen peat. Perhaps counterintuitively, SOM vulnerability to decomposition thus increased with an increasing degree of disturbance and a decreasing SOC content, indicating positive feedback mechanisms as soon as peat soils are disturbed by drainage. Furthermore, the variability of the SBR increased drastically with increasing degree of disturbance. The turnover of SOM in less disturbed peat samples tended to be higher in samples with higher nitrogen (N) content, higher pH value and lower C:N ratio, while plant-available phosphorus was important for the mineralisation of more severely disturbed peat. However, clear correlations between a single soil property and SBR could not be identified. The high potential of CO2 emissions from organic soils with a low SOC content implies that mixing organic soil with mineral soil does not seem to be a promising option for mitigating greenhouse emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据