4.6 Review

Life and death: A systematic comparison of antemortem and postmortem gene expression

期刊

GENE
卷 731, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gene.2020.144349

关键词

Epigenetics; Thanatotranscriptome (=the transcriptome after death); mRNA transcripts; Postmortem gene expression

资金

  1. National Institute of Justice, United States [2017 -MU-MU-0042]
  2. National Science Foundation HAD, United States [1818572]
  3. Division Of Human Resource Development
  4. Direct For Education and Human Resources [1818572] Funding Source: National Science Foundation

向作者/读者索取更多资源

Gene expression is the process by which DNA is decoded to produce a functional transcript. The collection of all transcripts is referred to as the transcriptome and has extensively been used to evaluate differentially expressed genes in a certain cell or tissue type. In response to internal or external stimuli, the transcriptome is greatly regulated by epigenetic changes. Many studies have elucidated that antemortem gene expression (transcriptome) may be linked to an array of disease etiologies as well as potential targets for drug discovery; on the other hand, a number of studies have utilized postmortem gene expression (thanatotranscriptome) patterns to determine cause and time of death. The transcriptome after death involves the study of mRNA transcripts occurring in human tissues after death (thanatos, Greek for death). While antemortem gene expression can provide a wide range of important information about the host, the determination of the communication of genes after a human dies has recently been explored. After death a plethora of genes are regulated via activation versus repression as well as diverse regulatory factors such as the absence or presence of stimulated feedback. Even postmortem transcriptional regulation contains many more cellular constituents and is massively more complicated. The rates of degradation of mRNA transcripts vary depending on the types of postmortem tissues and their combinatorial gene expression signatures. mRNA molecules have been shown to persist for extended time frames; nevertheless, they are highly susceptible to degradation, with half-lives of selected mRNAs varying between minutes to weeks for specifically induced genes. Furthermore, postmortem genetic studies may be used to improve organ transplantation techniques. This review is the first of its kind to fully explore both gene expression and mRNA stability after death and the trove of information that can be provided about phenotypical characteristics of specific genes postmortem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据