4.4 Article

Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum

期刊

FUNGAL GENETICS AND BIOLOGY
卷 134, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.fgb.2019.103277

关键词

Nitrogen sensing; Fusarium graminearum; 14-3-3; Nitrogen catabolite repression

资金

  1. AAFC

向作者/读者索取更多资源

Fusarium graminearum responds to environmental cues to modulate its growth and metabolism during wheat pathogenesis. Nitrogen limitation activates virulence-associated behaviours in F. graminearum including mycotoxin production and penetrative growth. In other filamentous fungi, nitrogen sensing is mediated by both the Target of Rapamycin (TOR) and the glutamine synthetase (GS)-dependent signaling pathways. While TOR-dependent nitrogen responses have been demonstrated in F. graminearum, the involvement of GS remains unclear. Our study indicates that both the TOR and GS signalling pathways are involved in nitrogen sensing in F. graminearum and contribute to glutamine-induced mycelial growth. However, neither pathway is required for glutamine-induced repression of the mycotoxin deoxynivalenol (DON) indicating that an additional nitrogen sensing pathway must exist. Further, two genes FgBMH1 and FgBMH2 encoding 14-3-3 proteins regulate nitrogen responses with effects on gene expression, DON production and mycelial growth. Unlike yeast, where 14-3-3s function redundantly in regulating nitrogen sensing, the 14-3-3 proteins have differing functions in F. graminearum. While both FgBMH1 and FgBMH2 regulate early glutamine-induced DON repression, only FgBMH2 is involved in regulating reproduction, virulence and glutamine-induced AreA repression. Together, our findings help to clarify the nitrogen sensing pathways in F. graminearum and highlight the involvement of 14-3-3s in the nitrogen response of filamentous fungi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据