4.5 Article

Using Low-Dimensional Manifolds to Map Relationships Between Dynamic Brain Networks

期刊

FRONTIERS IN HUMAN NEUROSCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnhum.2019.00430

关键词

dynamic brain networks; fMRI; connectivity pattern; PCA; t-SNE; embedding

资金

  1. National Institute on Alcohol Abuse and Alcoholism [P50 AA026117]
  2. National Institute of Environmental Health Sciences [R01 ES00873922S1]
  3. National Institute of Biomedical Imaging and Bioengineering [R01 EB024559]
  4. Wake Forest Clinical and Translational Science Institute (WF CTSI) NCATS [UL1TR001420]

向作者/读者索取更多资源

As the field of dynamic brain networks continues to expand, new methods are needed to allow for optimal handling and understanding of this explosion in data. We propose here a novel approach that embeds dynamic brain networks onto a two-dimensional (2D) manifold based on similarities and differences in network organization. Each brain network is represented as a single point on the low dimensional manifold with networks of similar topology being located in close proximity. The rich spatio-temporal information has great potential for visualization, analysis, and interpretation of dynamic brain networks. The fact that each network is represented by a single point makes it possible to switch between the low-dimensional space and the full connectivity of any given brain network. Thus, networks in a specific region of the low-dimensional space can be examined to identify network features, such as the location of brain network hubs or the interconnectivity between brain circuits. In this proof-of-concept manuscript, we show that these low dimensional manifolds contain meaningful information, as they were able to successfully discriminate between cognitive tasks and study populations. This work provides evidence that embedding dynamic brain networks onto low dimensional manifolds has the potential to help us better visualize and understand dynamic brain networks with the hope of gaining a deeper understanding of normal and abnormal brain dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据