4.5 Article

Nr1d1 affects autophagy in the skeletal muscles of juvenile Nile tilapia by regulating the rhythmic expression of autophagy-related genes

期刊

FISH PHYSIOLOGY AND BIOCHEMISTRY
卷 46, 期 3, 页码 891-907

出版社

SPRINGER
DOI: 10.1007/s10695-019-00757-9

关键词

Autophagy; Tilapia; Nutritional deprivation; Skeletal muscle; Daily rhythmicity; Nr1d1

资金

  1. National Natural Science Foundation of China [31820103016]

向作者/读者索取更多资源

Autophagy is an important evolutionary conserved process in eukaryotic organisms for the turnover of intracellular substances. Recent studies revealed that autophagy displays circadian rhythms in mice and zebrafish. To date, there is no report focused on the rhythmic changes of autophagy in fish skeletal muscles upon nutritional deprivation. In this study, we examined the circadian rhythms of 158 functional genes in tilapia muscle in response to starvation. We found that 12 genes were involved in autophagy changed their rhythm after starvation. Among these genes, Atg4c, Bnip3la, Lc3a, Lc3b, Lc3c, and Ulk1a exhibited a daily rhythmicity in tilapia muscle, and Atg4b, becn1, bnip3la, bnip3lb, Lc3a, and ulk1b were significantly upregulated in response to starvation. The number of autophagosomes was dramatically increased in fasted fish, indicating that nutritional signals affect not only the muscular clock system but also its autophagy behavior. Administration of GSK4112, an activator of Nr1d1, altered rhythmic expression of both circadian clock genes and autophagy genes in tilapia muscle. Taken together, these findings provide evidence that nutritional deficiency affects both circadian regulation and autophagy activities in skeletal muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据