4.5 Article

High Velocity Impact Response of Aluminum- Carbon Fibers-Epoxy Laminated Composites Toughened by Nano Silica and Zirconia

期刊

FIBERS AND POLYMERS
卷 21, 期 1, 页码 170-178

出版社

KOREAN FIBER SOC
DOI: 10.1007/s12221-020-9594-4

关键词

Carbon fibers; Nanosilica; Nanozirconia; High velocity impact; Toughening mechanisms

向作者/读者索取更多资源

This research work investigated the effects of SiO2 and ZrO2 nanoparticles type and content incorporated into an epoxy matrix on the high velocity impact behavior of carbon fiber reinforced aluminum laminates (CARALL). CARALL specimens consisted of a 0/90/90/0 stacking sequence of a carbon-epoxy composite containing 0, 1, 3, 5 and 7 wt% of each of nanoparticles sandwiched between two layers of aluminum 2024-T3. To observe the toughening effects of the nanoparticles on the fracture surface of the impacted CARALL, a typical field emission scanning electron microscope (FESEM) was employed. Impact energy absorption of CARALL was at most increased by 18 % and 12 % with the nanoparticles content of 5 wt% SiO2 and 3 wt% ZrO2, respectively. Overloading of the nanoparticles content up to 7 wt% resulted in the creation of nanoparticles aggregated sites associated with loss in the energy absorption capacity. FESEM fractography procedure also showed that the crack deflection and pinning were the most recognizable toughening mechanisms exhibited by nanoparticles. Overall, the controlled addition of SiO2/ZrO2 rigid nanoparticles to CARALL was found to be a promising method for improving the high velocity impact energy absorption of CARALL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据