4.7 Article

An efficient henry gas solubility optimization for feature selection

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 152, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2020.113364

关键词

Classification; Dimensionality reduction; Feature selection (FS); Henry gas solubility optimization (HGSO); Pattern recognition

向作者/读者索取更多资源

In classification, regression, and other data mining applications, feature selection (FS) is an important preprocess step which helps avoid advert effect of noisy, misleading, and inconsistent features on the model performance. Formulating it into a global combinatorial optimization problem, researchers have employed metaheuristic algorithms for selecting the prominent features to simplify and enhance the quality of the high-dimensional datasets, in order to devise efficient knowledge extraction systems. However, when employed on datasets with extensively large feature-size, these methods often suffer from local optimality problem due to considerably large solution space. In this study, we propose a novel approach to dimensionality reduction by using Henry gas solubility optimization (HGSO) algorithm for selecting significant features, to enhance the classification accuracy. By employing several datasets with wide range of feature size, from small to massive, the proposed method is evaluated against well-known metaheuristic algorithms including grasshopper optimization algorithm (GOA), whale optimization algorithm (WOA), dragonfly algorithm (DA), grey wolf optimizer (GWO), salp swarm algorithm (SSA), and others from recent relevant literature. We used k-nearest neighbor (k-NN) and support vector machine (SVM) as expert systems to evaluate the selected feature-set. Wilcoxon's ranksum non-parametric statistical test was carried out at 5% significance level to judge whether the results of the proposed algorithms differ from those of the other compared algorithms in a statistically significant way. Overall, the empirical analysis suggests that the proposed approach is significantly effective on low, as well as, considerably high dimensional datasets, by producing 100% accuracy on classification problems with more than 11,000 features. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据