4.7 Article

Human neural stem cells improve early stage stroke outcome in delayed tissue plasminogen activator-treated aged stroke brains

期刊

EXPERIMENTAL NEUROLOGY
卷 329, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2020.113275

关键词

Blood-brain barrier; Inflammation; Neural stem cells; Stem cell transplantation; Stroke; Tissue plasminogen activator

资金

  1. Louisiana Clinical and Translational Science Center (LA CaTs) Grant
  2. Tulane Carol Lavin Bernick Faculty Grant
  3. Tulane School of Medicine Faculty Research Pilot Fund
  4. Tulane Bridge Research Award

向作者/读者索取更多资源

Introduction: Clinically, significant stroke injury results from ischemia-reperfusion (IR), which induces a deleterious biphasic opening of the blood-brain barrier (BBB). Tissue plasminogen activator (tPA) remains the sole pharmacological agent to treat ischemic stroke. However, major limitations of tPA treatment include a narrow effective therapeutic window of 4.5 h in most patients after initial stroke onset and off-target non-thrombolytic effects (e.g., the risk of increased IR injury). We hypothesized that ameliorating BBB damage with exogenous human neural stem cells (hNSCs) would improve stroke outcome to a greater extent than treatment with delayed tPA alone in aged stroke mice. Methods: We employed middle cerebral artery occlusion to produce focal ischemia with subsequent reperfusion (MCAO/R) in aged mice and administered tPA at a delayed time point (6 h post-stroke) via tail vein. We transplanted hNSCs intracranially in the subacute phase of stroke (24 h post-stroke). We assessed the outcomes of hNSC transplantation on pathophysiological markers of stroke 48 h post-stroke (24 h post-transplant). Results: Delayed tPA treatment resulted in more extensive BBB damage and inflammation relative to MCAO controls. Notably, transplantation of hNSCs ameliorated delayed tPA-induced escalated stroke damage; decreased expression of proinflammatory factors (tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6), decreased the level of matrix metalloprotease-9 (MMP-9), increased the level of brain-derived neurotrophic factor (BDNF), and reduced BBB damage. Conclusions: Aged stroke mice that received delayed tPA treatment in combination with hNSC transplantation exhibited reduced stroke pathophysiology in comparison to non-transplanted stroke mice with delayed tPA. This suggests that hNSC transplantation may synergize with already existing stroke therapies to benefit a larger stroke patient population.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据