4.5 Review

Mitochondrial uncoupling and longevity - A role for mitokines?

期刊

EXPERIMENTAL GERONTOLOGY
卷 130, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exger.2019.110796

关键词

Uncoupling proteins; Energy metabolism; Skeletal muscle; Mitohormesis; GDF15; FGF21

资金

  1. German Research Foundation (DFG)

向作者/读者索取更多资源

Aging has been viewed both as a random process due to accumulation of molecular and cellular damage over time and as a programmed process linked to cellular pathway important for growth and maturation. These views converge on mitochondria as both the major producer of damaging reactive oxidant species (ROS) and as signaling organelles. A finite proton leak across the inner mitochondrial membrane leading to a slight uncoupling of oxidative phosphorylation and respiration is an intrinsic property of all mitochondria and according to the uncoupling to survive hypothesis it has evolved to protect against ROS production to minimize oxidative damage. This hypothesis is supported by evidence linking an increased endogenous, uncoupling protein (UCP1) mediated, as well as experimentally induced mitochondrial uncoupling to an increased lifespan in rodents. This is possibly due to the synergistic activation of molecular pathways linked to life extending effects of caloric restriction as well as a mitohormetic response. Mitohormesis is an adaptive stress response through mitonuclear signaling which increases stress resistance resulting in health promoting effects. Part of this response is the induction of fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), two stress-induced mitokines which elicit beneficial systemic metabolic effects via endocrine action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据