4.4 Article

Normal-ordered k-body approximation in particle-number-breaking theories

期刊

EUROPEAN PHYSICAL JOURNAL A
卷 56, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1140/epja/s10050-020-00045-8

关键词

-

向作者/读者索取更多资源

The reach of ab initio many-body theories is rapidly extending over the nuclear chart. However, dealing fully with three-nucleon, possibly four-nucleon, interactions makes the solving of the A-body Schrodinger equation particularly cumbersome, if not impossible beyond a certain nuclear mass. Consequently, ab initio calculations of mid-mass nuclei are typically performed on the basis of the so-called normal-ordered two-body (NO2B) approximation that captures dominant effects of three-nucleon forces while effectively working with two-nucleon operators. A powerful idea currently employed to extend ab initio calculations to open-shell nuclei consists of expanding the exact solution of the A-body Schrodinger equation while authorizing the approximate solution to break symmetries of the Hamiltonian. In this context, operators are normal ordered with respect to a symmetry-breaking reference state such that proceeding to a naive truncation may lead to symmetry-breaking approximate operators. The purpose of the present work is to design a normal-ordering approximation of operators that is consistent with the symmetries of the Hamiltonian while working in the context of symmetry broken (and potentially restored) methods. Focusing on many-body formalisms in which U(1) global-gauge symmetry associated with particle-number conservation is broken (and potentially restored), a particle-number-conserving normal-orderedk-body (PNOkB) approximation of an arbitrary N-body operator is designed on the basis of Bogoliubov reference states. A numerical test based on particle-number-projected Hartree-Fock-Bogoliubov calculations permits to check the particle-number conserving/violating character of a given approximation to a particle-number conserving operator. The PNOkB approximation of an arbitrary N-body operator is formulated. Based on this systematic approach, it is demonstrated that naive extensions of the normal-ordered two-body (NO2B) approximation employed so far on the basis of symmetry-conserving reference states lead to particle non-conserving operators. Alternatively, the PNOkB procedure is now available to generate particle-number-conserving approximate operators. The formal analysis is validated numerically. Using the presently proposed PNOkB approximation, ab initio calculations based on symmetry-breaking and restored formalisms can be safely performed. The future formulation of an angular-momentum-conserving normal-ordered k-body approximation based on deformed Slater determinant or Bogoliubov reference states is envisioned.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据