4.7 Article

Modifying the lipophilic part of phenylthiazole antibiotics to control their drug-likeness

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2019.111830

关键词

MDR-Bacteria; Antibiotic resistance; MRSA; Staphylococcal infections; Antibiofilm; Intracellular infections

资金

  1. Academy of Scientific Research and Technology, JESOUR-D program (Cycle 11), Egypt [3092]

向作者/读者索取更多资源

Compounds with high lipophilic properties are often associated with bad physicochemical properties, triggering many off-targets, and less likely to pass clinical trials. Two metabolically stable phenylthiazole antibiotic scaffolds having notable high lipophilic characters, one with alkoxy side chain and the other one with alkynyl moiety, were derivatized by inserting a cyclic amine at the lipophilic tail with the objective of improving physicochemical properties and the overall pharmacokinetic behavior. Only alkynyl derivatives with 4- or 5-membered rings showed remarkable antibacterial activity. The azetidine-containing compound 8 was the most effective and it revealed a potent antibacterial effect against 15 multi-drug resistant (MDR)-Gram positive pathogens including Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis and enterococci. Compound 8 was also highly effective in clearing 99.7% of the intracellular methicillin-resistant S. aureus (MRSA) harbored inside macrophages. In addition to the remarkable enhancement in aqueous solubility, the in vivo pharmacokinetic study in rats indicated that compound B can penetrate gut cells and reach plasma at a therapeutic concentration within 15 min and maintain effective plasma concentration for around 12 h. Interestingly, the main potential metabolite (compound 9) was also active as an antibacterial agent with potent antibiofilm activity. (C) 2019 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据