4.1 Article Proceedings Paper

NANOBIOCATALYTIC SYSTEMS BASED ON LIPASE-Fe3O4 AND CONVENTIONAL SYSTEMS FOR ISONIAZID SYNTHESIS: A COMPARATIVE STUDY

期刊

BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING
卷 33, 期 3, 页码 661-673

出版社

BRAZILIAN SOC CHEMICAL ENG
DOI: 10.1590/0104-6632.20160333s20150137

关键词

Isoniazid; Magnetic Nanoparticles; Nanobiocatalytic systems; Lipase; Tuberculostatic Drug

向作者/读者索取更多资源

Superparamagnetic nanomaterials have attracted interest in many areas due to the high saturation magnetization and surface area. For enzyme immobilization, these properties favor the enzyme-support contact during the immobilization reaction and easy separation from the reaction mixture by use of low-cost magnetic processes. Iron oxide magnetic nanoparticles (Fe3O4, MNPs), produced by the co-precipitation method, functionalized with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GLU), were evaluated as a solid support for Candida antarctica lipase B (CALB) immobilization. The nanomagnetic derivative (11nm) obtained after CALB immobilization (MNPs/APTES/GLU/CALB) was evaluated as biocatalyst in isoniazide (INH) synthesis using ethyl isonicotinate (INE) and hydrazine hydrate (HID) as substrates, in 1,4-dioxane. The results showed that MNPs/APTES/CALB had a similar performance when compared to a commercial enzyme Novozym 435, showing significant advantages over other biocatalysts, such as Rhizhomucor miehei lipase (RML) and CALB immobilized on non-conventional, low-cost, chitosan-based supports.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据