4.8 Article

Geochemical Multisurface Modeling of Reactive Zinc Speciation in Compost as Influenced by Extraction Conditions

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 4, 页码 2467-2475

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b04104

关键词

-

向作者/读者索取更多资源

Knowledge on organic matter (OM) concentration and composition is of major importance for predicting Zn speciation and bioavailability in soils, especially for low-Zn soils. However, comprehensive knowledge on the effect of soil-like organic amendments such as compost on metal speciation is limited. For the first time, multisurface modeling is applied on compost to study the effect of solid and dissolved OM composition on the speciation of reactive Zn as influenced by conditions applied in frequently used extractions to estimate Zn bioavailability. First, compost OM composition was determined by fractionation in operationally defined humic, fulvic, and hydrophilic acid pools under various extraction conditions, and subsequently, Zn speciation was modeled using the generic non-ideal competitive adsorption-Donnan (NICA-Donnan) model in addition to adsorption to hydrous ferric oxide (HFO) and clay. The results show a strong effect of extraction conditions on OM concentration and composition and related dissolved Zn speciation. Model predictions show that Zn in solution is mainly bound to dissolved humic acids. Analysis of deviations between measured and modeled Zn concentrations reveal specific limitations of the current generic model parameters, particularly with regard to Zn binding to OM at low concentrations and Ca-Zn competition, that is, typical conditions that occur in low-Zn soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据