4.7 Article

Dynamic probabilistic material flow analysis of rubber release from tires into the environment

期刊

ENVIRONMENTAL POLLUTION
卷 258, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113573

关键词

-

向作者/读者索取更多资源

The presence of microplastics in the environment is currently receiving a lot of attention. Rubber particles from tire wear have been estimated in several mass emission inventories to be a major contributor to the total microplastic release. This work used dynamic probabilistic material flow analysis to quantify the flows of rubber particles from tires to roads and further onto soils and surface waters of Switzerland. The model considered the whole life-cycle of tires from import over the use phase to the end-of-life and the re-use of scrap tires. Uncertainties of model parameters and data variability were considered by using a probabilistic approach. Mass flows onto soils and through road drainage by both uncontrolled dispersal and engineered systems are considered. In addition, the release of rubber from artificial turfs was included. The accumulation of rubber particles in the environment was quantified over the time frame from 1988 to 2018. The results show that in 2018, 1.29 +/- 0.45 kg/capita of rubber was emitted from tire wear (97%) and rubber granules (3%). Street cleaning and waste water treatment removed around 26% of this rubber mass before finally reaching the receiving environmental compartment, resulting in an effective input of 0.96 +/- 035 kg/capita of rubber in 2018 into the natural environment. Most of this mass (74%) was deposited on roadside soils (up to 5 m distance from road), 22% flowed into surface waters and the remaining part (4%) was emitted to soils. The dynamic modeling showed an increase of the input into the environment by about 10% from 1990 to 2018. The ban of sewage sludge application on soils resulted in a marked decrease in the amount transferred to soils after the year 2000. In total, 219 +/- 22 ktonnes of rubber particles have accumulated in the environment since 1988 in Switzerland. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据