4.7 Article

Perfluorooctanoic acid and perfluorooctane sulfonate co-exposure induced changes of metabolites and defense pathways in lettuce leaves

期刊

ENVIRONMENTAL POLLUTION
卷 256, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113512

关键词

Phytotoxicity; Perfluorooctanoic acid; Perfluorooctane sulfonate; Metabolic response; Metabolomics

资金

  1. National Natural Science Foundation of China [51578042, 51978037]
  2. National Agricultural Products Quality and Safety Risk Assessment Project [GJFP2019034]
  3. Key Science and Technology Project of Beijing Agricultural Bureau [20180131]

向作者/读者索取更多资源

Growing evidence shows plants are at risks of exposure to various per- and polyfluoroalkyl substances (PFASs), however the phytotoxicity induced by these compounds remains largely unknown on the molecular scale. Here, lettuce exposed to both perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at different concentrations (500, 1000, 2000 and 5000 ng/L) in hydroponic media was investigated via metabolomics. Under the co-exposure conditions, the growth and biomass were not affected by PFOA and PFOS, but metabolic profiles of mineral elements and organic compounds in lettuce leaves were significantly altered. The contents of Na, Mg, Cu, Fe, Ca and Mo were decreased 1.8%-47.8%, but Zn was increased 7.4%-24.2%. The metabolisms of amino acids and peptides, fatty acids and lipids were down-regulated in a dose-dependent manner, while purine and purine nucleosides were upregulated, exhibiting the stress response to PFOA and PFOS co-exposure. The reduced amounts of phytol (14.8%-77.0%) and abscisic acid (60.7%-73.8%) indicated the alterations in photosynthesis and signal transduction. The metabolism of (poly)phenol, involved in shikimate-phenylpropanoid pathway and flavonoid branch pathway, was strengthened, to cope with the stress of PFASs. As the final metabolites of (poly)phenol biosynthesis, the abundance of various antioxidants was changed. This study offers comprehensive insight of plant response to PFAS co-exposure and enhances the understanding in detoxifying mechanisms. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据