4.7 Article

Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level

期刊

ENVIRONMENTAL POLLUTION
卷 255, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113170

关键词

Nitrogen addition; Soil aggregate fraction; Heavy metal speciation; Soil organic matter turnover

资金

  1. National Key Research and Development Program of China [2018YFC1900102]
  2. National Natural Science Foundation of China [41501242, 51325804]
  3. Major Science and Technology Program for Water Pollution Control and Treatment of China [2012ZX07203-003]

向作者/读者索取更多资源

Nitrogen (N) addition can change physicochemical properties and biogeochemical processes in soil, but whether or not these changes further affect the transport and transformation of heavy metal speciation is unknown. Here, a long-term (2004-2016) field experiment was conducted to assess the responses of different heavy metal speciation in three soil aggregate fractions to N additions in a temperate agro-ecosystem of North China. The organic matter turnover time was quantified based on changes in delta C-13 following the conversion from C3 (wheat) to C4 crop (corn). Averagely, N addition decreases and increases the heavy metal contents in bioavailable and organic bound fractions by 27.5% and 16.6%, respectively, suggesting N addition promotes the transformation of heavy metal speciation from bioavailable to organic bound, and such a promotion in a small aggregate fraction is more remarkable than that in a large aggregate fraction. The transformations of heavy metal speciation from bioavailable to organic bound in all soil aggregate fractions are largely dependent on the increments in the turnover time of organic matter. The increase in organic matter turnover time induced by N addition may inhibit the desorption of heavy metals from organic matter by prolonging the interaction time between heavy metals and organic matter and enhance the capacity of organic matter to adsorb heavy metals by increasing the humification degree and functional group. Our work can provide insights into the accumulation, migration, and transformation of heavy metals in soils in the context of increasing global soil N input from a microenvironmental perspective. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据