4.7 Article

Competitive interactions among H, Cu, and Zn ions moderate aqueous uptake of Cu and Zn by an aquatic insect

期刊

ENVIRONMENTAL POLLUTION
卷 255, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113220

关键词

Aqueous Cu uptake; Aqueous Zn uptake; Competitive interactions; pH inhibition; Aquatic insect

资金

  1. U.S. Geological Survey, Environmental Health Mission Area

向作者/读者索取更多资源

The absorption of aqueous copper (Cu) and zinc (Zn) by aquatic insects, a group widely used to assess water quality, is unresolved. This study examined interactions among Cu, Zn, and protons that potentially moderate Cu and Zn uptake by the acid-tolerant stonefly Zapada sp. Saturation uptake kinetics were imposed to identify competitive mechanisms. Decreasing pH reduced the maximum transport capacity, Jmax, in both metals, had little effect on the Cu dissociation constant, K-D, and increased the Zn K-D. Partial noncompetitive (Cu) and partial mixed competitive (Zn) inhibitor models most closely tracked the observed Cu and Zn influx rates across pH treatments. The estimated values for acid dissociation constants for the binary (proton-receptor) and ternary (proton-metal-receptor) complexes indicated the strong inhibitory effect of protons on Cu and Zn. In neutral pH water, Cu inhibited Zn influx, but Zn had little effect on Cu influx. The mechanism of Cu-Zn interaction was not identified. Results from separate Zn experiments suggested that the insect's developmental stage may affect the apparent Jmax. The study underscores some of the challenges of modeling metal bioaccumulation and informs future research directions. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据