4.6 Article

Spatial heterogeneity stabilizes predator-prey interactions at the microscale while patch connectivity controls their outcome

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 22, 期 2, 页码 694-704

出版社

WILEY
DOI: 10.1111/1462-2920.14887

关键词

-

资金

  1. Korea-Israel Joint Collaboration Fund [K21001001804-10B1200-489 21610]
  2. GIF, German-Israeli Foundation for Scientific Research and Development [I-2390-304.6/2015]
  3. Israel Science Foundation [1583/12]
  4. Israeli Ministry of Science and Technology, Republic of Korea's Ministry of Science, ICT and Future Planning

向作者/读者索取更多资源

Natural landscapes are both fragmented and heterogeneous, affecting the distribution of organisms, and their interactions. While predation in homogeneous environments increases the probability of population extinction, fragmentation/heterogeneity promotes coexistence and enhances community stability as shown by experimentation with animals and microorganisms, and supported by theory. Patch connectivity can modulate such effects but how microbial predatory interactions are affected by water-driven connectivity is unknown. In soil, patch habitability by microorganisms, and their connectivity depend upon the water saturation degree (SD). Here, using the obligate bacterial predator Bdellovibrio bacteriovorus, and a Burkholderia prey, we show that soil spatial heterogeneity profoundly affects predatory dynamics, enhancing long-term co-existence of predator and prey in a SD-threshold dependent-manner. However, as patches and connectors cannot be distinguished in these soil matrices, metapopulations cannot be invoked to explain the dynamics of increased persistence. Using a set of experiments combined with statistical and physical models we demonstrate and quantify how under full connectivity, predation is independent of water content but depends on soil microstructure characteristics. In contrast, the SD below which predation is largely impaired corresponds to a threshold below which the water network collapses and water connectivity breaks down, preventing the bacteria to move within the soil matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据