4.2 Review

Fanconi anemia and the underlying causes of genomic instability

期刊

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS
卷 61, 期 7, 页码 693-708

出版社

WILEY
DOI: 10.1002/em.22358

关键词

Fanconi anemia; bone marrow failure; reactive aldehydes; ALDH2; DNA-protein cross-link

资金

  1. National Institutes of Health [R01 CA218132]
  2. American Cancer Society [132235-RSG-18-037-DMC]

向作者/读者索取更多资源

Fanconi anemia (FA) is a rare genetic disorder, characterized by birth defects, progressive bone marrow failure, and a predisposition to cancer. This devastating disease is caused by germline mutations in any one of the 22 known FA genes, where the gene products are primarily responsible for the resolution of DNA interstrand cross-links (ICLs), a type of DNA damage generally formed by cytotoxic chemotherapeutic agents. However, the identity of endogenous mutagens that generate DNA ICLs remains largely elusive. In addition, whether DNA ICLs are indeed the primary cause behind FA phenotypes is still a matter of debate. Recent genetic studies suggest that naturally occurring reactive aldehydes are a primary source of DNA damage in hematopoietic stem cells, implicating that they could play a role in genome instability and FA. Emerging lines of evidence indicate that the FA pathway constitutes a general surveillance mechanism for the genome by protecting against a variety of DNA replication stresses. Therefore, understanding the DNA repair signaling that is regulated by the FA pathway, and the types of DNA lesions underlying the FA pathophysiology is crucial for the treatment of FA and FA-associated cancers. Here, we review recent advances in our understanding of the relationship between reactive aldehydes, bone marrow dysfunction, and FA biology in the context of signaling pathways triggered during FA-mediated DNA repair and maintenance of the genomic integrity. Environ. Mol. Mutagen. 2020. (c) 2020 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据