4.8 Article

The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique

期刊

ENVIRONMENT INTERNATIONAL
卷 134, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2019.105305

关键词

PM2.5; Micro-air quality sensors; Data fusion; Spatial-temporal estimation

资金

  1. Taiwan Environmental Protection Administration (Taiwan EPA)
  2. Ministry of Science and Technology (Taiwan) [EPA-106-L103-02-A022, EPA-106-L102-02-A142, MOST 107-2119-M-008-006]

向作者/读者索取更多资源

With the rapid development of the Internet of things (IoTs) and modern industrial society, forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited by the number and the data quality of air quality monitoring stations. In Taiwan, the spatial and temporal data of PM2.5 concentrations are measured by 77 national air quality monitoring stations (built by Taiwan EPA). However, the national stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places are still out of coverage of the monitoring network. Recently, under the framework of IoTs, there are hundreds of portable air quality sensors called AirBox developed jointly by the Taiwan local government and a private company. By virtue of its low price and portability, the AirBox can provide a higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution is different between AirBox and EPA stations, and data quality and accuracy of AirBox is poorer than national air quality monitoring stations. Thus, to integrate the heterogeneous PM2.5 data, the data fusion technique should be used before further analysis. In this study, we propose a new data fusion method called multi-sensor space-time data fusion framework. It is based on the Optimum Linear Data Fusion theory and integrating with a multi-time step Kriging method for spatial-temporal estimation. The method is used to do heterogeneous data fusion from different sources and data qualities. It is able to improve the estimation of PM2.5 concentration in space and time. Results have shown that by combining PM2.5 concentration data from 1176 low-cost AirBoxes as additional information in our model, the estimation of spatial-temporal PM2.5 concentration becomes better and more reasonable. The r(2) of the validation regression model is 0.89. Under the approach proposed in this study, we made the information of the microsensors more reliable and improved the higher spatial-temporal resolution of air quality monitoring. It could provide very useful information for better spatial-temporal data analysis and further environmental management, such as air pollution source localization, health risk assessment, and micro-scale air pollution analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据