4.7 Article

Numerical modeling for damaged reinforced concrete slab strengthened by ultra-high performance concrete (UHPC) layer

期刊

ENGINEERING STRUCTURES
卷 209, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2019.110031

关键词

Ultra-high performance concrete; UHPC; Reinforced concrete slab; Strengthen; Cracks; Interface model; Finite element model

资金

  1. National Natural Science Foundation of China Project [51578226 51578226, 51778221]

向作者/读者索取更多资源

Ultra-high performance concrete (UHPC) has been developed as an innovative cementitious based material. It can be used for repairing and strengthening existing reinforced concrete (RC) structures because of its excellent mechanical performance, such as high tensile and compressive strengths, long-term durability, and low permeability. However, when using UHPC to strengthen existing RC structures for flexure members, there is limited information on simulating existed cracks in RC structures and considering interface modeling between RC substrate and UHPC overlay. This research developed a finite element (FE) model to investigate flexural behaviors of UHPC-RC composite slab with introducing existed cracks in RC substrate by geometry discontinuous, approximately matched with experimental results previously published by the authors. Meanwhile, based on recent research on the bond strength of UHPC to concrete, a UHPC-RC interfacial model was included in the FE model. The FE model was validated with experimental laboratory results previously published by the authors, and a good agreement was obtained between numerical and experimental results. Finally, a parameter study was conducted to investigate the strengthening effects and optimizing strengthening parameters by using the developed FE model. Results showed that the effect of existing cracks on the ultimate flexure capacity of UHPC-RC cannot be neglected, and the interface model has a precise accuracy in FE modeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据