4.7 Article

Effect of excavation stress condition on hydraulic fracture behaviour

期刊

ENGINEERING FRACTURE MECHANICS
卷 226, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2020.106871

关键词

Underground excavation; Excavation stress redistribution; Hydraulic fracturing; Fracture path

资金

  1. National Natural Science Foundation of China [41630642]

向作者/读者索取更多资源

The fracture behaviour of single- and multi-stage hydraulic fracturing (HF) under varying excavation stress conditions was studied using a flow-coupled discrete element method (DEM). Conventional HF theories and analytical solutions for excavation stress redistribution are used to verify the numerical model. The numerical simulation results indicated that for the single-stage HF, both the in situ stresses and injection location have major influences on the HF propagation path, caused by the redistributions of the local maximum and minimum principal stresses under excavation conditions. Fractures generally propagate perpendicular to the local minimum principal stress (sigma(min)) and also propagate preferentially towards the area with lower sigma(min). Hydraulic fractures propagation is dominated by tensile failure, and the generation of fracture branches is disfavored because of the high local compressive stress field induced by the HF process itself. As for multi-stage HF, different excavation stress conditions may cause different fracture development performances because of alterations of the preferred fracture orientation, blunting of propagating fractures, or creating a more complex fracture geometry in the affected zone. Therefore, when using high-pressure HF for preconditioning the rock mass to assist mechanical excavation in hard rock mining, performance can be enhanced by understanding the impact of stress changes and careful selection of appropriate HF methods depending on the in situ stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据