4.7 Article

Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine

期刊

ENERGY
卷 195, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.117039

关键词

Hybrid powertrain; Downsized combustion engines; Variable compression ratio; Emissions regulations; Driving cycles

资金

  1. FEDER
  2. Spanish Ministerio de Economia y Competitividad [TRA2017-87694-R]
  3. Universitat Politecnica de Valencia through Convocatoria de ayudas a Primeros Proyectos de Investigacion [SP20180148]

向作者/读者索取更多资源

After the diesel emissions scandal, also known as Dieselgate, Direct Injection Spark-Ignited (DISI) internal combustion engines (ICE) appears as the most promising alternative to mitigate the harmful tailpipe emissions from passenger cars. In spite of that, the current ICE technologies are not enough to achieve the fuel consumption/CO2 emissions targets set by the new transportation legislation (4.1 L-gasoline/100 km, 95 gCO(2)/km for 2021). In this complex scenario, the electrification of the powertrain using high efficiency electric motors and battery package together with sophisticated DISI engines appears as potential solution to meet these requirements. The aim of this work is to study the fuel consumption and pollutant emissions in transient conditions from a passenger car equipped with a variable compression ratio (VCR) DISI engine and electrified powertrain technologies. The vehicle behavior was simulated by means of a 0D GT-Suite model fed by experimental results obtained in an engine test bench. Mild hybrid electric vehicle (MHEV) and full hybrid electric vehicle (FHEV) architectures using a VCR DISI engine were studied. Moreover, an optimization methodology is presented to select the best vehicle configuration in terms of hardware and control strategies by means of a design of experiments (DoE). The results show that VCR allows a fuel improvement of 3% with respect to the conventional DISI fixed CR along the worldwide harmonized light vehicles test cycles (WLTC). The benefits found when combining the VCR technology with hybrid powertrains are even higher. In this sense, the fuel improvements were higher as the electrification levels increased, with 8% for MHEV-VCR and around 20% for FHEV-VCR. In terms of emissions, the two clear benefits with FHEV-VCR were the reduction of particle number (PN) and unburned hydrocarbons (HC) of around 60% and 15%, respectively, as compared to the conventional DISI. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据