4.7 Article

Energy use embodied in international trade of 39 countries: Spatial transfer patterns and driving factors

期刊

ENERGY
卷 195, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.116988

关键词

Energy use embodied in trade; Input-output analysis; LMDI; Driving factors

资金

  1. Natural Science Foundation of Guangdong Province [2018B030312004]
  2. Ministry of Education of Humanities and Social Science project of China [17YJC790061]
  3. Zhejiang Provincial Natural Science Foundation of China [LY19G030013]
  4. National Natural Science Foundation of China [41761021, 41901170]
  5. Guangdong Basic and Applied Basic Research Foundation [2019A1515011385]
  6. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai) [99147-42080011]

向作者/读者索取更多资源

The energy embodied in international trade is transferred globally through trade links. The understanding of the energy flows embodied in international trade and what drives the variations in embodied energy use is of great significance for achieving the global goal of saving energy and reducing energy-related emissions. Thus, this research, in its first stage, calculated the energy use embodied in international trade of 39 countries from 1995 to 2011 by building a multiregional input-output model and described the spatial transfer patterns of energy flows using geo-visualization techniques. In the second stage, this paper applied the Logarithmic Mean Divisia Index (LMDI) approach to identify the driving factors of embodied energy use. The findings are as follows. (1) The aggregated embodied energy use of these 39 countries significantly increased during the sample period. ( 2) Regarding the flows of embodied energy use, these 39 countries can be classified into 3 groups, namely, energy-rich countries with net outflows (Group 1), developed countries (Group 2) and developing countries with net inflows (Group 3). (3) From the decomposition results of the LMDI method, both energy intensity and economic output are the main driving factors that affect embodied energy outflow and inflow changes in international trade. The improvement of energy intensity is the main contributor to reducing the increase in energy use embodied in international trade. Moreover, increases in embodied energy use are attributed to the growth of imports and exports, economic output, and population. On the other hand, upgrading industrial systems and optimizing industrial structure can contribute to reducing embodied energy use growth. Accordingly, policy recommendations are given. International trade plays a crucial role in assigning different shares of responsibility for energy-related emissions reduction. To formulate effective and efficient environmental policies, embodied energy use should be considered. Moreover, solutions to alleviate environmental pollution are improved energy use and extensive use of clean energy. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据