4.7 Article

Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture

期刊

ENERGY
卷 194, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116855

关键词

Coal-fired power plant; Oxy-combustion; Ultra-supercritical steam; CO2 capture; CO2 processing unit; Techno-economic analysis

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MEST) [NRF-2019R1H1A2079924]
  2. National Research Council of Science & Technology (NST) grant of the Korea government (MSIP)

向作者/读者索取更多资源

The adoption of oxy-combustion in a circulating fluidized bed (CFB) producing ultra-supercritical (USC) steam has been investigated to increase energy efficiency and reduce CO2 emissions of coal-fired power plants. This paper presents a techno-economic analysis for 500 MWe USC-CFB power plants with air- and oxy-combustion in the presence of CO2 capture. An amine absorber unit (MU) and a CO2 processing unit (CPU) were used to capture CO2 in the air- and oxy-combustion power plants, respectively. The air-combustion power plant without CO2 capture (Case 1) showed the highest net electricity efficiency (46%), whereas the introduction of an AAU in the air-combustion power plant (Case 2) reduced the net efficiency to 36%. The net efficiency (39%) of the oxy-combustion power plant with CPU (Case 3) was higher than that of Case 2 owing to the recycling of hot flue gas. The levelized cost of electricity (LCOE) of Case 3 (59 $/MWh) was lower than that of Case 2 (64 $/MWh), which demonstrated that oxy-combustion was advantageous compared to air-combustion in a scenario with CO2 capture. The sensitivity analyses of the electricity price and CO2 credit showed economic situations where Cases 2 and 3 would be profitable. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据