4.7 Article

Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures

期刊

ENERGY
卷 189, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116233

关键词

Battery thermal management system; Heat pipe; Thermal performance; Electrochemical performance

资金

  1. Natural Science Foundation of Guangdong Province [2018B030311043]
  2. National Natural Science Foundation of China [51776077]
  3. Project of the Guangzhou Science and Technology Plan [201807010074]
  4. Central Universities Fundamental Research Project in South China University of Technology [2018ZD05]
  5. Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization [2017B030314128]

向作者/读者索取更多资源

The thermal and electrochemical performance is seldom discussed for a battery module using heat pipe cooling. A three dimensional battery module model, including conjugated heat transfer sub-model, multi-cell sub-models and heat pipe sub-model for a serially connected battery module using heat pipe cooling, is developed and experimentally validated. The electrochemical-thermal characteristic is correspondingly considered for each cell. The dynamics of temperature, local current density, Li+ concentration and voltage are studied in cooling process with different coolant temperatures. With coolant temperature reducing, the temperature difference of the module increases although the maximum temperature decreases. The cell near to the inlet has larger local temperature difference. Under different coolant temperatures, both the local current density and Li+ concentration initially show little variation. Subsequently, those under lower coolant temperatures changes more violently, forming a larger spatial gradient within a cell. Compared with that in anode, the gradient of solid phase Li+ concentration in cathode is more sensitive to the coolant temperature and dominates the loss of available capacity when reducing coolant temperature. The voltage of the battery module decreases and the available capacity decreases by about 0.88%-1.17% with reducing coolant temperature by 10 degrees C at 5C discharge. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据