4.7 Article

Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling

期刊

ENERGY
卷 188, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116048

关键词

Thermoelectric cooler (TEC); Battery thermal management; Phase change material (PCM) composite; Working time t(50); Steady-state theoretical analysis; Optimal current

资金

  1. National Natural Science Foundation of China [51876113]
  2. Science and Technology Commission of Shanghai Municipality [14520501100]

向作者/读者索取更多资源

In this paper, the thermal performance of thermoelectric cooler (TEC) in thermal management of a cylindrical battery module is investigated. The battery module consisted of 18650 test batteries in 3 x 5 array embedded in the copper foam impregnated with organic phase change material (PCM) for heat transfer enhancement. In the experimental test, the transient and steady-state thermal performances were examined base on the thermoelectric cooling in comparison with the natural convection and liquid cooling conditions. The characteristic PCM melting stages were identified to correlate with the maximum temperature and temperature difference in the battery module. In comparison, the thermoelectric cooling reduced the battery temperature and prolonged the working time significantly. The optimal current was experimentally obtained to be about 6.0-6.5 A based on the highest cooling power or lowest battery temperature, which is close to the optimal range based on the steady-state theoretical analysis. Further analysis shows that the optimal current is affected markedly by the hot-side thermal resistance, but little by the cold-side thermal resistance. Increasing the number of TEC thermoelectric arms by reducing the spacing has a favorable effect in improving the coefficient of performance (COP) of the TEC module. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据