4.7 Article

Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations-study of modelling and application in five climatic regions

期刊

ENERGY
卷 192, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116608

关键词

Phase change materials (PCMs); Latent heat storage; Optimal design; Robust operation; Machine learning; Climate-adaptive operation

资金

  1. Hong Kong Polytechnic University
  2. City University of Hong Kong
  3. Hunan University

向作者/读者索取更多资源

The widespread application of advanced renewable systems with optimal design can promote the cleaner production, reduce the carbon dioxide emission and realise the renewable and sustainable development. In this study, a phase change material integrated hybrid system was demonstrated, involving with advanced energy conversions and multi-diversified energy forms, including solar-to-electricity conversion, active water-based and air-based cooling, and distributed storages. A generic optimization methodology was developed by integrating supervised machine learning and heuristic optimization algorithms. Multivariable optimizations were systematically conducted for widespread application purpose in five climatic regions in China. Results showed that, the energy performance is highly dependent on mass flow rate and inlet cooling water temperature with contribution ratios at around 90% and 7%. Furthermore, compared to Taguchi standard orthogonal array, the machine-learning based optimization can improve the annual equivalent overall output energy from 86934.36 to 90597.32 kWh (by 4.2%) in ShangHai, from 86335.35 to 92719.07 (by 7.4%) in KunMing, from 87445.1 to 912183 (by 4.3%) in GuangZhou, from 87278.24 to 88212.83 (by 1.1%) in HongKong, and from 87611.95 to 92376.46 (by 5.4%) in HaiKou. This study presents optimal design and operation of a renewable system in different climatic regions, which are important to realise renewable and sustainable buildings. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据