4.6 Article

RuO2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries

期刊

ELECTROCHIMICA ACTA
卷 326, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135009

关键词

CNTS-CC; RuO2-Nanorods; Porous; Flexible free standing electrode; Supercapacitor; Li ion batteries

向作者/读者索取更多资源

Engineering carbon-based nanostructures, including synthesis, structural designing, and characterization between carbon and active nanomaterials, possesses enormous potential for enabling exceptional electrochemical characteristics and fundamental breakthroughs. Here, we reported RuO2 nanorods (RuO2-NRs) decorated CNTS grown carbon cloth (CNTS-CC) via simple single step CVD and annealing process, as an excellent combination having advantages of the supercapacitors (SCs) and Li-ion batteries (LIBs). A number of characterizations, including scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction measurements affirm that RuO2-NRs are consistently covering the surface of CNTS-CC. The Brunauere Emmette Teller analysis displays that the fabricated architecture holds a well organized 3D interconnected hierarchically micro-mesoporous network that simultaneously facilitates rapid electron transfer and ion diffusion. Furthermore, the electrochemical performance revealing that the RuO2-CNTS-CC has outstanding Li-ion storage potential, including impressive rate capability, large specific capacity and excellent cyclic stability. For supercapacitor application, it is found that RuO2-CNT-CC holds an admirable specific capacitance that can maintain up to 97% after 10,000 cycles. The compatible and inexpensive preparation strategy presented here can contribute as a dynamic methodology towards the advancement of efficient hybrid devices. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据