4.6 Article

Degradation kinetics of Pt during high-temperature PEM fuel cell operation part II: Dissolution kinetics of Pt incorporated in a catalyst layer of a gas-diffusion electrode

期刊

ELECTROCHIMICA ACTA
卷 333, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135509

关键词

Gas-diffusion electrode; Platinum dissolution; Phosphoric acid; Fuel cell; Mathematical modelling

资金

  1. Grant Agency of the Czech Republic [19-02964J]
  2. Operational Programme Prague - Competitiveness [CZ.2.16/3.1.00/24501]
  3. National Program of Sustainability [NPU I LO1613]

向作者/读者索取更多资源

This paper presents the experimentally studied degradation of a gas-diffusion electrode under a potentiostatic regime. The experimental conditions corresponded to the operation of a high-temperature fuel cell with a proton-exchange membrane, e.g. in 99.6 wt% H3PO4, at a temperature of 160 degrees C. A onedimensional mathematical model of the degradation of a gas-diffusion electrode was validated using experimental data and utilised for determination of kinetics data of the electrochemical dissolution of Pt. The mathematical model predicted a general mechanism of Pt degradation during electrode polarisation, comprising the electrochemical oxidation of the surface of smaller nanoparticles to PtO, followed by the chemical dissolution of PtO to Pt-(sol)(2+) and electrochemical reduction of the formed Pt-(sol)(2+) on the bare Pt surface of larger nanoparticles. The intensity of degradation varied with the electrode polarisation potential. At potentials close to 0.7 V vs. dynamic hydrogen electrode (DHE), only small nanoparticles were dissolved, while at potentials close to 1 V vs. DHE, Pt dissolution took place on a wider range of nanoparticle sizes, resulting in a higher concentration of Pt-(sol)(2+) on the electrode and, consequently, in a higher rate of nanoparticle growth. The mathematical model presented can be used, with modifications, to make an approximate estimate of the extent of degradation and Pt nanoparticle size distribution in a gas-diffusion cathode, depending on the polarisation potential within the range of 0.7-1 V vs. DHE. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据