4.6 Article

Deconvolution of electrochemical impedance data for the monitoring of electrode degradation in VRFB

期刊

ELECTROCHIMICA ACTA
卷 336, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135510

关键词

vanadium; Redox flow battery; Degradation; Electrochemical impedance spectroscopy; Distribution of relaxation times

资金

  1. BMWi [03 ET6129C]

向作者/读者索取更多资源

Understanding degradation phenomena occurring during the operation of vanadium redox-flow batteries (VRFB) requires a measurement technique which allows for differentiating the overall performance losses into individual performance losses of the cell components. For this purpose, electrochemical impedance spectroscopy (EIS) is a valuable and well established tool. However, the discrimination of processes taking place at similar time scales is challenging since they overlap in the commonly used Nyquist or Bode representation. Distribution of relaxation times (DRT) analysis tackles this issue by deconvoluting EIS data with respect to the time constants of the individual processes. It hence circumvents the necessity of finding a suitable equivalent circuit model and thus allows for data evaluation without any a-priori knowledge of the system under study. For the first time, we herein present the application of DRT transform to EIS data of a VRFB. By varying experimental conditions and employing full cell as well as double half cell operational modes, we are able to identify the faradaic process of the negative half cell. This enables us to visualize the negative half cell's contribution to the overall impedance of a VRFB even in a full cell EIS measurement. By an accelerated degradation experiment we finally demonstrate the great potential of DRT analysis for future application in the monitoring of electrode degradation in VRFB. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据