4.6 Article

Phase-tuned nanoporous vanadium pentoxide as binder-free cathode for lithium ion battery

期刊

ELECTROCHIMICA ACTA
卷 330, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135192

关键词

Vanadium oxides; Phase transition; Thermal decomposition; Anodization; Lithium ion batteries

资金

  1. Korea Institute of Energy Technology Evaluation and Planning(KETEP) [20194030202340]
  2. Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea [20194030202340]
  3. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Korea government(MSIT) [2019R1A2C1006816]
  4. Korea Evaluation Institute of Industrial Technology (KEIT) [20194030202340] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  5. National Research Foundation of Korea [2019R1A2C1006816] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Phase-controlled nanoporous vanadium pentoxide (V2O5) was prepared by electrochemical oxidation of vanadium foil as a binder-free cathode with high capacity and good cycling stability for lithium ion batteries. Increasing the annealing temperature led to the formation of a V2O5 film with preferential growth along the (001) plane on the as-prepared anodic film, resulting in enhanced Li ion diffusion and electronic conductivity. Thermal reduction of V2O5, depending on the annealing temperature, generated V3O2 and VO2 (R), which affect both the cell capacity and stability. Appropriate development of the (001) plane and intermediate phases (such as V3O2 and VO2) by thermal decomposition of the V 2 0 5 lattice, determined by the annealing temperature, are key parameters for achieving high performance of the vanadium oxide cathode for Li ion batteries. The anodic V2O5 film annealed at 400 degrees C shows the highest discharge capacity of 170.1 mAh g(-1) at fast charge/discharge rate (1.5 C) and good cycling stability for 100 cycles with a capacity retention of 91.4 %. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据