4.6 Article

Enhanced state estimation and bad data identification in active power distribution networks using photovoltaic power forecasting

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 177, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2019.105974

关键词

Active distribution system; State estimation; Forecasting of photovoltaic power generation; Gaussian mixture model; Pseudo measurement; Bad data

向作者/读者索取更多资源

In view of the problems of insufficient real-time measurements in active distribution networks, a state estimation method for active distribution networks is proposed based on the forecasting of photovoltaic (PV) power generation. First, the extreme learning machine (ELM) enhanced by the genetic algorithm (GA) is used to forecast the PV power generation. Second, the Gaussian mixture model (GMM) is used to model the forecasting error. The weighted mean of the forecasting error is used to correct the forecasting value of the PV power generation, and the weighted variance of the forecasting error is used as the basis for setting the pseudo measurement weight. Finally, the real-time measurements collected by the supervisory control and data acquisition (SCADA) system, the forecasted pseudo measurements, and the virtual measurements are used to estimate the state of the active distribution network using the weighted least square (WLS) algorithm. Through simulations in the IEEE 33-bus system, it is shown that the proposed model provides accurate and reliable pseudo measurements for the active distribution network, improves the redundancy of the system, and thus further improves the accuracy of the state estimation and the capability of detecting and identifying bad data in active distribution systems without adding measurement devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据