4.7 Article

Biodegradation mechanism of tetracycline (TEC) by strain Klebsiella sp. SQY5 as revealed through products analysis and genomics

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.109676

关键词

Tetracycline; Biodegradation; Degradation products; Genomics; Functional genes

资金

  1. National Natural Science Foundation of China [21477039, U1401235, 2016B020240005]

向作者/读者索取更多资源

Although it has been proved that abiotic processes can transform tetracycline (TEC), little is known about how microbial processes may degrade TEC in aquatic environment. The objective of this study is to investigate the biodegradation pathway of TEC by strain Klebsiella sp. SQY5 and molecular mechanism of TEC resistance under the aerobic conditions. Effects of mycelium, intracellular, and extracellular enzyme on TEC degradation process were explored, suggesting that mycelium contributed the most of TEC degradation with a maximum efficiency of 58.64%. Biodegradation characteristic of TEC and its degradation products were studied. The results showed that nine possible biodegradation products were identified, and a potential biodegradation pathway was proposed including the removal of methyl, carbonyl, and amine groups. The functional genes of this bacterium were also determined by genomics, and analysis indicated that functional genes that could be relevant to hydrolysis, ring opening and oxidation played an important role in the process of TEC biodegradation. Results from this study can provide a theoretical basis for better estimating the fate, transportation, and degradation of antibiotics in aquatic environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据