4.7 Article

Ammonia inhalation impaired immune function and mitochondrial integrity in the broilers bursa of fabricius: Implication of oxidative stress and apoptosis

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.110078

关键词

Ammonia; Broilers; Bursa of fabricius; Mitochondrial dysfunction; Apoptosis

资金

  1. National Key Research and Development Program of China [2016YFD0500501]
  2. National Natural Science Foundation of China [31972612]
  3. Open Project of State Key Laboratory on Animal Nutrition [2004DA125184F1714]
  4. China Agricultural Research System

向作者/读者索取更多资源

Ammonia (NH3) is considered as environmental pollutant and toxic agent for animals and humans including poultry. Previous reports demonstrated that NH3 suppressed broilers immunity. However, the harmful effects of NH3 on broilers bursa of fabricius (BF) is still unknown. Functionally, apoptosis is very important for many physiological processes including homeostasis of lymphocyte population. Therefore, the present study was aimed to investigate the underlying mechanisms of NH3 toxicity in the broilers BF. Histological observation showed lymphocyte accumulation, cavities and increased interstitial cells in BF. Ultrastructural observation indicated mitochondrial vacuoles, deformation and disappearance of mitochondrial membranes. Oxidative stress markers (CAT, MDA, H2O2, GGT, GSH-Px and GSH) showed that NH3-induced oxidative stress in BF. Meanwhile, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay revealed increased apoptotic cells. In addition, the mRNA and protein expression of dynamin-related protein 1 (Drp1), mitochondria] fission factor (Mff), mitofusin 1 and 2 (Mfn1 and Mfn2), optic atrophy 1 (Opa1) indicated imbalance between mitochondrial inner and outer membrane and results in mitochondrial dysfunction in broilers BF. The mRNA and protein expression of apoptosis-related genes including Caspase-3, Caspase-9, Caspase-8, Cytochrome-C (Cyt-C), p53, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax) were significantly altered in broilers BF. Conclusively, these results displayed that excessive NH3 causes BF damage and mitochondrial dysfunction through oxidative stress and apoptosis in BF and could affect immune function of BF. These findings provide possible therapeutic targets to prevent NH3 induced toxicity in the BF of broilers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据