4.7 Article

Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin, China

期刊

ECOLOGICAL INDICATORS
卷 108, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2019.105760

关键词

Plant phenology; Asymmetric warming; Urban heat island

资金

  1. National Natural Science Foundation of China [41975044, 41601044]
  2. Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences, Wuhan [CUGCJ1704, CUGL170401]

向作者/读者索取更多资源

Climate conditions are the major driving factors of vegetation phenology. However, there is limited effort to monitor dynamics of vegetation phenology and its responses to climate change and urbanization. Using NDVI data from 1982 to 2015, this study investigated the spatiotemporal change of spring green-up date (GUD) across the Yellow River Basin (YRB) and estimated the possible effects of different climatic factors on it. Additionally, the urban-rural differences in GUD and its linkage to spring land surface temperature (LST) for YRB's major cities over 2001-2015 were investigated. The results showed that the GUD significantly advanced at a rate of 0.42 days yr(-1) and delayed spatially from southeast to northwest. The interannual variations in regionally averaged GUD were driven mainly by preseason min-temperature (T-min). Spatially, the effect of preseason T-min was strongest in the central and western region. The confounding effects of preseason maximum temperature (T-max) and precipitation jointly affected the GUD, while insolation had a weak impact on GUD. Moreover, the sensitivity of GUD to preseason T-min and precipitation weakened with an increasing mean annual preseason precipitation gradient, but the sensitivity to preseason T-max was gradually enhanced. Furthermore, the difference in the GUD between urban and rural areas presented a significant logarithmic relationship with the distance away from the urban center, and it was strongly related to the regional LST. Our findings confirmed the importance of T-min and urbanization in regulating changes in GUD and further suggested that LST should be considered to develop an improved model of GUD under future climate change and urban development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据