4.7 Article

Seasonal riverine barium isotopic variation in the middle Yellow River: Sources and fractionation

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 531, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2019.115990

关键词

barium isotopes; seasonal variation; adsorption; silicate weathering; the Yellow River; the Chinese Loess Plateau

资金

  1. CAS Strategic Priority Research Program [XDA20070102]
  2. NSFC Programs [41991322, 41773149, 41625012]

向作者/读者索取更多资源

Barium (Ba) isotopes have been used to trace water mass mixing and export productivity in the oceans. However, the sources, isotopic signature and seasonal variation of dissolved Ba in large rivers remain poorly constrained. In order to improve our understanding of sources and fractionation of riverine Ba isotopes at the continental scale, weekly sampling of river water was carried out in the middle Yellow River over the full hydrological year of 2013. Dissolved Ba was mainly sourced from silicate dissolution, whose flux was correlated with physical erosion rate in this arid to semi-arid basin, largely covered by loess. More than half of the annual dissolved Ba flux was transported during the monsoon season (June to mid-September), in particular during a storm event period (accounting for 4% of the annual dissolved Ba flux in 4 days). The dissolved Ba isotopic composition (delta (138) Ba-rw) ranged from +0.17 parts per thousand to +0.46 parts per thousand, all higher than delta Ba-138 of loess (0.00 +/- 0.04 parts per thousand). The seasonal variation in delta Ba-138(rw) is best explained via an adsorption model of light Ba isotopes onto solids in the river, which is sensitive to erosion of loess, in particular during the storm event and the spring-time ice melting intervals, with a potential role of barite precipitation in groundwater during the dry seasons. With one to three orders of magnitude higher particulate matter fluxes during the monsoon seasons in rivers such as the Yellow River, desorption of Ba could result an unaccounted strong variation of Ba concentration and isotopic composition in coastal environments, which further study requires. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据