4.5 Review

Mechanisms of neuronal homeostasis: Autophagy in the axon

期刊

BRAIN RESEARCH
卷 1649, 期 -, 页码 143-150

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2016.03.047

关键词

Autophagy; Axon; Neuron; Retrograde transport; Neurodegeneration

资金

  1. NIH [K99NS082619, R00NS082619]

向作者/读者索取更多资源

Autophagy is an evolutionarily conserved lysosomal degradation pathway that removes damaged organelles and protein aggregates from the cytoplasm. Being post-mitotic, neurons are particularly vulnerable to the accumulation of proteotoxins and are thus heavily dependent on autophagy to maintain homeostasis. In fact, CNS-specific and neuron-specific loss of autophagy is sufficient to cause neurodegeneration in mice. Further, mutations in genes that encode PINK1 and Parkin, proteins that selectively remove damaged mitochondria, cause Parkinson's disease, linking defective autophagy with neurodegenerative disease in humans. This review provides an overview of the mechanisms of autophagy in the axon and the role of neuronal autophagy in axonal homeostasis and degeneration. The pathway for autophagosome biogenesis and maturation along the axon will be discussed as well as several key in-sights revealing the diverse functions of axonal autophagy. Evidence linking altered autophagy with axonal degeneration and neuronal death will be presented. Appropriate manipulation of autophagy may lead to promising therapeutics for neurodegenerative diseases. This article is part of a Special Issue entitled SI:Autophagy. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据