4.1 Article

Genetic Algorithm Optimisation of a TNT Solidification Model

期刊

DEFENCE SCIENCE JOURNAL
卷 69, 期 6, 页码 545-549

出版社

DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE
DOI: 10.14429/dsj.69.14037

关键词

TNT; Grenade; Solidification; Genetic algorithm; Solidification process; Neumann's analytical solution

向作者/读者索取更多资源

The control of the solidification process of energetic materials is important to prevent manufacturing defects in high explosive ammunitions. The present work aims to propose an optimisation procedure to determine the value of the model parameter, avoiding the traditional trial and error approach. In this work, the solidification of TNT has been numerically modelled employing apparent heat capacity method and the model parameter was optimised using genetic algorithm. One dimensional numerical model has been solved in Comsol Multiphysics Modeling Software and the genetic algorithm code was written in Matlab. The Neumann's analytical solution of the solidification front was used as a reference to build the fitness function, following the inverse problems concepts. The optimum model parameter has been predicted after 20 generations and among 30 candidate solutions for each generation. The numerical solution performed with the optimised model parameter has agreed with the analytical solution, indicating the feasibility of the proposed procedure. The discrepancy was 3.8 per cent when maximum difference between analytical and numerical solutions was observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据