4.6 Article

Aggregation Prone Regions in Antibody Sequences Raised Against Vibrio cholerae: A Bioinformatic Approach

期刊

CURRENT BIOINFORMATICS
卷 15, 期 9, 页码 988-1009

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1574893615666200106120504

关键词

Aggregation prone regions; Vibrio cholerae; cholera; antibody sequence; bioinformatics; vaccine

向作者/读者索取更多资源

Background: Cholera, a diarrheal illness, causes millions of deaths worldwide due to large outbreaks. The monoclonal antibody used as therapeutic purposes of cholera is prone to be unstable due to various factors including self-aggregation. Objectives: In this bioinformatic analysis, we identified the aggregation prone regions (APRs) of antibody sequences of different immunogens (i.e., CTB, ZnM-CTB, ZnP-CTB, TcpA-CT-CTB, ZnM-TcpA-CT-CTB, ZnP-TcpA-CT-CTB, ZnM-TcpA, ZnP-TcpA, TcpA-CT-TcpA, ZnM-TcpACT-TcpA, ZnP-TcpA-CT-TcpA, Ogawa, Inaba and ZnM-Inaba) raised against Vibrio cholerae. Methods: To determine APRs in antibody sequences that were generated after immunizing Vibrio cholerae immunogens on Mus musculus, a total of 94 sequences were downloaded as FASTA format from a protein database and the algorithms such as Tango, Waltz, PASTA 2.0, and AGGRESCAN were followed to analyze probable APRs in all of the sequences. Results: A remarkably high number of regions in the monoclonal antibodies were identified to be APRs which could explain a cause of instability/short term protection of the anticholera vaccine. Conclusion: To increase the stability, it would be interesting to eliminate the APR residues from the therapeutic antibodies in such a way that the antigen-binding sites or the complementarity determining region loops involved in antigen recognition are not disrupted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据