4.7 Article

Experimental investigation on load bearing capacity of full scaled light timber framed wall for mid-rise buildings

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 231, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2019.117069

关键词

Compression perpendicular to the grain; Light timber framing; Mid-rise; Full scale timber framed wall; Bearing strength enhancement; Timber reinforcement

向作者/读者索取更多资源

Timber is an isotropic natural construction material with ductile and brittle behaviour in compression and tension, respectively. It is one of the most economical solutions for low-rise residential buildings, in many countries including Australia. Yet, its relatively lower load bearing capacity in compression perpendicular to the grain, and some consequences such as long-term and short-term shortening have resulted in limited applications of light timber framed system in multi-story buildings. In order to take the most advantage of this efficient and light-weight building material specifically light, applying some timber framed reinforcement solutions and better use of materials can improve the performance of timber framed structures. This study presents the results of a series of full scale experimental investigations on light timber framed walls under compression, whose results can be used for the design of mid-rise light timber framed buildings. First, with regard to the compression perpendicular to the grain, full scale walls connected through a stud-to-plate system and made of four different timber plate species (machine graded pine (MGP10), pine cypress, ash silver top, and cross laminated timber (CLT)) are tested. Then the effects of a reinforcement solution on enhancing the load bearing capacity is investigated. At the next stage, for studying the compression parallel to the grain, the performance of common stud-to-stud connections as well as a notched connecting system with machine graded pine (MGP10) and laminated veneer lumber (LVL) studs is considered. A comparison between the load bearing capacity of the tested systems is made, and the results are used in a case study on the design of a multi-story timber framed building. The results indicate that the solutions suggested for improving the compression bearing capacity can be applied to mid-rise light timber frame buildings. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据