4.7 Article

High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 230, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2019.117063

关键词

Lignin modified asphalt; Rheological behavior; Fatigue performance; Activation energy; Master curve; Multiple stress creep recovery (MSCR)

资金

  1. National Natural Science Foundation of China [51778062, 51878063, 51608085]
  2. Fundamental Research Foundation of the Central Universities [3001 0221 8718]
  3. General Project of China Postdoctoral Science Foundation [2018 M633444]
  4. China Scholarship Council [201706560009]

向作者/读者索取更多资源

The objective of this study was to introduce lignin as a bio-additive to modify the base asphalt and investigate the high-temperature rheological performances of lignin modified asphalts and virgin asphalt. In this study, asphalt PG 58-28 was selected as the virgin asphalt, and four contents, 2%, 4%, 6% and 8%, of the total binder by weight of lignin were incorporated in the base binder. Rotational viscosity (RV), dynamic shear rheometer (DSR), and multiple stress creep recovery (MSCR) tests were conducted to characterize the rheological performances of different types of asphalts. Linear amplitude sweep (LAS) test was employed to evaluate the fatigue performance. The results showed that the incorporation of lignin increased the viscosity of virgin asphalt at different rotational speeds. The activation energy showed an increasing trend as the lignin increased compared with the virgin asphalt. Meanwhile, the lignin incorporated into the asphalt binder increased the elastic components, and improved the resistance of asphalt binder to the permanent deformation regardless of the lignin contents. The addition of lignin in the asphalt binder could retard oxidation reactions that occurred in the asphalt during the rolling thin film oven aging. In addition, the incorporation of lignin may degrade the fatigue life of asphalt. However, when the content of lignin was less than 8%, the reduction was small. This study could provide a prospective foundation for the utilization of lignin extracted from waste biomass as an exceptional and renewable bio-additive in the field of asphalt pavement engineering. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据